题目内容
国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查,某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图(1)所示的一次函数关系。随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低,且z与x之间大致满足如图(2)所示的一次函数关系。
(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?
(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式。
(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值。![]()
(1)该商场销售家电的总收益为800×200=160000(元)
(2)根据题意设
y=k1x+800,Z=k2x+200
∴400k1+800=1200,200k2+200=160
解得k1=1,k2=-![]()
∴y=x+800,Z=-
x+200.
(3)W=yZ=(x+800)•(-
x+200)=-
(x-100)2+162000.
∵-
<0,∴W有最大值.当x=100时,W最大=162000
∴政府应将每台补贴款额x定为100元,总收益有最大值
其最大值为162000元.
解析
练习册系列答案
相关题目