题目内容
设x为正整数,则函数y=x2-x+
的最小值是多少?
| 1 |
| x |
∵y=x2-x+
=x(x-1)+1-
=1+
=1+
=1+
,
∵x为正整数,
∴
≥0,
当x=1时,
=0,
∴y=1+
≥1.
∴函数y=x2-x+
的最小值是1.
| 1 |
| x |
| x-1 |
| x |
| x2(x-1)-(x-1) |
| x |
| (x-1)(x2-1) |
| x |
| (x-1)2(x+1) |
| x |
∵x为正整数,
∴
| (x-1)2(x+1) |
| x |
当x=1时,
| (x-1)2(x+1) |
| x |
∴y=1+
| (x-1)2(x+1) |
| x |
∴函数y=x2-x+
| 1 |
| x |
练习册系列答案
相关题目