题目内容
设x为正整数,则函数y=x2-x+| 1 | x |
分析:首先将原函数变形为:y=1+
,又由x为正整数,可得
≥0,即求得函数y=x2-x+
的最小值.
| (x-1)2(x+1) |
| x |
| (x-1)2(x+1) |
| x |
| 1 |
| x |
解答:解:∵y=x2-x+
=x(x-1)+1-
=1+
=1+
=1+
,
∵x为正整数,
∴
≥0,
当x=1时,
=0,
∴y=1+
≥1.
∴函数y=x2-x+
的最小值是1.
| 1 |
| x |
| x-1 |
| x |
| x2(x-1)-(x-1) |
| x |
| (x-1)(x2-1) |
| x |
| (x-1)2(x+1) |
| x |
∵x为正整数,
∴
| (x-1)2(x+1) |
| x |
当x=1时,
| (x-1)2(x+1) |
| x |
∴y=1+
| (x-1)2(x+1) |
| x |
∴函数y=x2-x+
| 1 |
| x |
点评:此题考查了函数的最值问题.题目难度较大,解题的关键是将函数变形为y=1+
.
| (x-1)2(x+1) |
| x |
练习册系列答案
相关题目