题目内容

如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为( )

A.2
B.
C.2
D.
【答案】分析:先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.
解答:解:过O作OC⊥AP于点C,连结OB,
∵OP=4,∠APO=30°,
∴OC=sin30°×4=2,
∵OB=3,
∴BC===
∴AB=2
故选A.
点评:此题考查了垂经定理,用到的知识点是垂经定理、含30度角的直角三角形、勾股定理,解题的关键是作出辅助线,构造直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网