题目内容

8.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2$\sqrt{3}$.

分析 过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,解直角三角形即可得到结论.

解答 解:过M作MN′⊥OB于N′,交OC于P,
则MN′的长度等于PM+PN的最小值,
即MN′的长度等于点P到点M与到边OA的距离之和的最小值,
∵∠ON′M=90°,OM=4,
∴MN′=OM•sin60°=2$\sqrt{3}$,
∴点P到点M与到边OA的距离之和的最小值为2$\sqrt{3}$.

点评 本题考查了轴对称-最短路线问题,解直角三角形,正确的作出图形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网