题目内容

7.如图1,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,AB、EF的中点均为O,连接BF,CD,CO.
(1)求证:CD=BF;
(2)如图2,当△DEF绕O点顺时针旋转的过程中,探究BF与CD间的数量关系和位置关系,并证明.

分析 (1)根据等腰直角三角形的性质得CO=BO,OD=OF,则CD=OC+OD=OB+OF=BF;
(2)连结OC、OD,BF与CD相交于H,如图2,根据等腰直角三角形的性质得OC⊥AB,OD⊥EF,则∠BOF=∠DOC,接着可证明△BOF≌△COD得到BF=CD,∠OBF=∠OCD,然后证明∠CHB=∠COB=90°得到BF⊥CD.

解答 解:(1)∵△ABC与△DEF都是等腰直角三角形,
∴AB、EF的中点均为O,
∴CO=BO,OD=OF,
∴CD=OC+OD=OB+OF=BF;
(2)解:BF=CD,BF⊥CD.
理由如下:
连结OC、OD,BF与CD相交于H,如图2,

∵△ABC与△DEF都是等腰直角三角形,
∴OC⊥AB,OD⊥EF,
∴∠BOC=90°,∠DOF=90°,
∴∠BOF=∠DOC,
在△BOF和△COD中,
$\left\{\begin{array}{l}{OB=OC}\\{∠BOF=∠COD}\\{OF=OD}\end{array}\right.$,
∴△BOF≌△COD,
∴BF=CD,∠OBF=∠OCD,
∴∠CHB=∠COB=90°,
∴BF⊥CD.

点评 本题考查了等腰直角三角形的性质、求得三角形的性质与判定定理,解决本题的关键是利用等腰三角形的性质,证明三角形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网