题目内容
关于x的一元二次方程
(1)求证:方程总有两个不相等的实数根;
(2)写出一个m的值,并求此时方程的根.
实数a,b在数轴上的对应点的位置如图所示,把-a,-b,0按从小到大的顺序排列,正确的是( )
A. -a<0<-b B. 0<-a<-b C. -b<0<-a D. 0<-b<-a
解不等式组.
若△ABC∽△A′B′C′,AB=2,A′B′=4,则△ABC与△A′B′C′ 的面积的比为( )
A. 1:2 B. 2:1 C. 1:4 D. 4:1
如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD=∠BED.
(1)求证:BC是⊙O的切线;
(2)当点E为弧AD的中点且∠BED=30°时,⊙O半径为2,求DF的长度.
如图,已知钝角△ABC,老师按照如下步骤尺规作图:
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H .
小明说:图中的BH⊥AD且平分AD.
小丽说:图中AC平分∠BAD.
小强说:图中点C为BH的中点.
他们的说法中正确的是___________.他的依据是_____________________.
如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,-1),雍和宫站的坐标为(0,4),则西单站的坐标为( )
A. (0,5) B. (5,0) C. (0,-5) D. (-5,0)
解不等式组:,并将它的解集在数轴上表示出来.
如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=(k>0,x>0)的图像上点P(m,n)是函数图像上任意一点,过点P分别作x轴y轴的垂线,垂足分别为E,F.并设矩形OEPF和正方形OABC不重合的部分的面积为S.
(1)求k的值;
(2)当S=时 求p点的坐标;
(3)写出S关于m的关系式.