题目内容

精英家教网如图,正方形OAPB、等腰直角三角形ADF的顶点A,D,B在坐标轴上,点P,F在函数y=
9
x
(x>0)
的图象上,则点F的坐标为(  )
A、(
3
5
-3
2
3
5
+3
2
)
B、(
8+2
7
2
8-2
7
2
)
C、(
3
5
+3
2
3
5
-3
2
)
D、(
8-2
7
2
8+2
7
2
)
分析:由正方形OAPB,及点P在函数y=
9
x
上,可得出点P的坐标(3,3),再由△AFD是等腰直角三角形,可得出yF=xF-3,代入函数方程中即可解得点F的坐标.
解答:解:∵OAPB是正方形,∴点P的横纵坐标相等,
且点P在函数y=
9
x
上,
∴点P的坐标为(3,3)
设F点的坐标为(x,y)
∵△ADF是等腰直角三角形,
∴y=x-3,
将其代入函数y=
9
x
中,
得x=
3+3
5
2
,y=
3
5
-3
2

∴点F的坐标为(
3+3
5
2
3
5
-3
2
).
故选C.
点评:本题关键是要由正方形OAPB判断出点P的横纵坐标相等,同学们解题时一定要留心观察.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网