题目内容
【题目】如图,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.
![]()
【答案】(1)证明见解析;(2)证明见解析;(3)△DBC是等腰三角形,证明见解析.
【解析】
(1)利用已知条件证明△DAB≌△EBC(ASA),根据全等三角形的对应边相等即可得到AD=BE;
(2)分别证明AD=AE,CE=CE,根据线段垂直平分线的逆定理即可解答;
(3)△DBC是等腰三角形,由△DAB≌△EBC,得到DB=EC,又有△AEC≌△ADC,得到EC=DC,所以DB=DC,即可解答.
解:(1)∵∠ABC=90°,
∴∠ABD+∠DBC=90°,
∵CE⊥BD,
∴∠BCE+∠DBC=90°,
∴∠ABD=∠BCE,
∵AD∥BC,
∴∠DAB=∠EBC,
在△DAB和△EBC中,
,
∴△DAB≌△EBC(ASA)
∴AD=BE
(2)∵E是AB的中点,即AE=BE,
∵BE=AD,
∴AE=AD,
∴点A在ED的垂直平分线上(到角两边相等的点在角的平分线上),
∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠BAD=90°,
∴∠BAC=∠DAC=45°,
在△EAC和△DAC中,
,
∴△EAC≌△DAC(SAS)
∴CE=CD,
∴点C在ED的垂直平分线上
∴AC是线段ED的垂直平分线.
(3)△DBC是等腰三角形
∵△DAB≌△EBC,
∴DB=EC
∵△AEC≌△ADC,
∴EC=DC,
∴DB=DC,
∴△DBC是等腰三角形.
【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
频率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率