题目内容

如图,已知抛物线y=
1
2
x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BCx轴.
(1)求抛物线的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE=
2
,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.
(1)∵抛物线y=
1
2
x2+mx+n与y轴交于点C
∴C(0,n)
∵BCx轴
∴B点的纵坐标为n
∵B、A在y=x上,且OA=OB
∴A(-n,-n),B(n,n)
1
2
n2+mn+n=n
1
2
n2-mn+n=-n

解得:n=0(舍去),n=-2;m=1
∴所求解析式为:y=
1
2
x2+x-2

(2)作DH⊥EG于H
∵D、E在直线y=x上
∴∠EDH=45°
∴DH=EH
∵DE=
2

∴DH=EH=1
∵D(x,x)
∴E(1+x,1+x)
∴F的纵坐标:
1
2
x2+x-2,
G的纵坐标:
1
2
(x+1)2+(x+1)-2
∴DF=x-(
1
2
x2+x-2)=2-
1
2
x2,EG=(x+1)-[
1
2
(x+1)2+(x+1)-2]=2-
1
2
(x+1)2
∴y=
1
2
[2-
1
2
x2+2-
1
2
(x+1)2]×1
y=-
1
2
x2-
1
2
x+
7
4

y=-
1
2
(x+
1
2
2+
15
8

∴x的取值范围是-2<x<1.当x=-
1
2
时,y最大值=
15
8

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网