题目内容
已知x1、x2是方程x2-3x-2=0的两个实数根,则(x1-1)(x2-1)的值为
- A.-2
- B.-4
- C.-6
- D.-8
B
分析:先将(x1-1)(x2-1)展开,得到关于x1+x2和x1•x2的式子,再根据根与系数的关系求出x1+x2和x1•x2的值,代入求值即可.
解答:∵(x1-1)(x2-1)=x1x2-(x1+x2)+1①,
又∵x1、x2是方程x2-3x-2=0的两个实数根,
∴x1•x2=-2②;x1+x2=3③,
把②③代入:(x1-1)(x2-1)=x1x2-(x1+x2)+1①得
原式=-2-3+1=-4.
故选B.
点评:本题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,难度适中.
分析:先将(x1-1)(x2-1)展开,得到关于x1+x2和x1•x2的式子,再根据根与系数的关系求出x1+x2和x1•x2的值,代入求值即可.
解答:∵(x1-1)(x2-1)=x1x2-(x1+x2)+1①,
又∵x1、x2是方程x2-3x-2=0的两个实数根,
∴x1•x2=-2②;x1+x2=3③,
把②③代入:(x1-1)(x2-1)=x1x2-(x1+x2)+1①得
原式=-2-3+1=-4.
故选B.
点评:本题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,难度适中.
练习册系列答案
相关题目
已知x1,x2是方程x2+3x+1=0的两个实数根,则x13+8x2+20=( )
| A、1 | ||
| B、-1 | ||
C、
| ||
D、-
|