题目内容
若a+x2=2008,b+x2=2009,c+x2=2010,且abc=24,则| a |
| bc |
| b |
| ac |
| c |
| ab |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
分析:由题知a=b-1,c=b+1,又由abc=24,则
+
+
-
-
-
=
,将a=b-1,c=b+1代入上式得答案为
.
| a |
| bc |
| b |
| ac |
| c |
| ab |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| (a-b)2+(a-c)2+(b-c)2 |
| 2abc |
| 1 |
| 8 |
解答:解:
∵a+x2=2008,b+x2=2009,c+x2=2010,
∴可知a=b-1,c=b+1,
又∵abc=24,
则
+
+
-
-
-
=
∴将a=b-1,c=b+1代入上式得:
+
+
-
-
-
=
,
故答案为
.
∵a+x2=2008,b+x2=2009,c+x2=2010,
∴可知a=b-1,c=b+1,
又∵abc=24,
则
| a |
| bc |
| b |
| ac |
| c |
| ab |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
=
| (a-b)2+(a-c)2+(b-c)2 |
| 2abc |
∴将a=b-1,c=b+1代入上式得:
| a |
| bc |
| b |
| ac |
| c |
| ab |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| 8 |
故答案为
| 1 |
| 8 |
点评:本题主要考查代数式求值问题,首先将代数式化简,再联系题干,便可得到结果,要灵活掌握.
练习册系列答案
相关题目