题目内容

已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
考点:根的判别式,一元二次方程的定义
专题:证明题
分析:若一元二次方程有两个相等的实数根,则根的判别式△=b2-4ac=0,即(c-a)2-4(b-c)(a-b)=0,再利用完全平方公式与多项式的乘法化简得到(a-2b+c)2=0,进而得到2b=a+c.
解答:证明:∵关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根,
∴△=(c-a)2-4(b-c)(a-b)=0,
∴c2-2ac+a2-4(ab-b2-ac+bc)=0,
∴a2+4b2+c2-4ab+2ac-4bc=0,
∴(a-2b+c)2=0,
∴a-2b+c=0,
∴2b=a+c.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网