题目内容


如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是(  )

 

A.

①②④

B.

③④

C.

①③④

D.

①②

 


A解:①∵二次函数的图象开口向下,

∴a<0,

∵二次函数的图象交y轴的正半轴于一点,

∴c>0,

∵对称轴是直线x=

∴﹣

∴b=﹣a>0,

∴abc<0.

故①正确;

②∵由①中知b=﹣a,

∴a+b=0,

故②正确;

③把x=2代入y=ax2+bx+c得:y=4a+2b+c,

∵抛物线经过点(2,0),

∴当x=2时,y=0,即4a+2b+c=0.

故③错误;

④∵(0,y1)关于直线x=的对称点的坐标是(1,y1),

∴y1=y2

故④正确;

综上所述,正确的结论是①②④.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网