题目内容

已知x+y+z=0,求
x2
2x2+yz
+
y2
2y2+zx
+
z2
2z2+xy
的值.
考点:对称式和轮换对称式
专题:计算题
分析:根据已知条件,将代数式变形为:2x2+yz=-(x-y)(z-x),2y2+zx=-(x-y)(y-z),2z2+xy=-(z-x)(y-z),将上述三个变形结果分别代入所给的代数式中,化简、变形,运算、求值,即可解决问题.
解答:解:∵x+y+z=0,
∴x=-y-z,
2x2+yz=x2+x2+yz=x2+x(-y-z)+yz
=x2-xy-xz+yz=x(x-y)-z(x-y)
=-(x-y)(z-x);
同理可得:2y2+zx=-(x-y)(y-z),
2z2+xy=-(z-x)(y-z),
∴原式
=
-x2
(x-y)(z-x)
+
-y2
(x-y)(y-z)
+
-z2
(z-x)(y-z)

=
-x2(y-z)-y2(z-x)-z2(x-y)
(x-y)(y-z)(z-x)

∵-x2(y-z)-y2(z-x)-z2(x-y)
=-x2y+x2z-y2z+xy2-xz2+yz2
=-xy(x-y)+z(x+y)(x-y)-z2(x-y)
=(x-y)(-xy+zx+zy-z2
=(x-y)[x(z-y)-z(z-y)]
=-(x-y)(y-z)(z-x),
∴原式=
-(x-y)(y-z)(z-x)
(x-y)(y-z)(z-x)
=-1.
点评:该题考查了对称式和轮换对称式的化简与求值问题;解题的关键是深刻把握所给代数式的结构特点,灵活运用有关公式将所给的代数式变形、化简、计算、求值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网