题目内容
解不等式或不等式组,并在数轴上表示它们的解集
(1)≤.
(2).
如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=_____°.
如图1,已知点A(8,4),点B(0,4),线段CD的长为3,点C与原点O重合,点D在x轴正半轴上.线段CD沿x轴正方向以每秒1个单位长度的速度向右平移,过点D作x轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F(如图2),设运动时间为t.当E点与A点重合时停止运动.
(1)求线段CE的长;
(2)记△CDE与△ABO公共部分的面积为S,求S关于t的函数关系式;
(3)如图2,连接DF.
①当t取何值时,以C、F、D为顶点的三角形为等腰三角形?
②△CDF的外接圆能否与OA相切?如果能,直接写出此时t的值;如果不能,请说明理由.
四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tanθ的值是( )
A. B. C. D.
如图,在边长为1个单位长度的小正方形组成的网格中,小正方形的顶点叫做格点,△ABC叫做格点三角形(三角形的顶点都是格点),请按要求完成:
(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请在网格中画出△A1B1C1;
(2)将△A1B1C1绕点B1顺时针旋转90°,得到△A2B1C2,请在网格中画出△A2B1C2;
(3)将△ABC沿直线B1 C2翻折,得到△A3B3C,请在网格中画出△A3B3C;
(4)线段BC沿着由B到B1的方向平移至线段B1C1,求线段BC扫过的面积.
某班同学去观影,甲种票每张35元,乙种票每张25元,如果56名同学每人购买1张甲种票或者1张乙种票,购票恰好用去1370元,设甲种票买了张,乙种票买了张,根据题意,可列方程组为________________.
下列四组数值中,方程组的解是( ).
A. B. C. D.
在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
如图,已知四边形OABC是平行四边形,反比例函数的图象经过点C,且与AB交于点D,连接OD,CD,若BD=3AD,△OCD的面积是10,则k的值为( )
A. 10 B. -5 C. D.