题目内容

2.填空:
(1)已知DE∥BC,则△ADE∽△ABC;
(2)已知∠A=∠D,则$\frac{CD}{AC}$=$\frac{CE}{BC}$=$\frac{DE}{AB}$(填边长比例关系);
(3)已知∠DAB=∠CAE,AB•AD=AE•AC,则∠ADE=∠C;
(4)已知∠ABP=CDP,则PA•CD═PC•AB;
(5)已知:∠ABC=90°,∠ACB=30°,AD=2AC,CD=2BC,则∠D=30°.

分析 根据相似三角形的判定和性质定理即可得到结论.

解答 解:(1)已知DE∥BC,则△ADE∽△ABC;
(2)已知∠A=∠D,则$\frac{CD}{AC}$=$\frac{CE}{BC}$=$\frac{DE}{AB}$,(填边长比例关系);
(3)已知∠DAB=∠CAE,AB•AD=AE•AC,则∠ADE=∠C;
(4)已知∠ABP=∠CDP,则PA•CD═PC•AB;
(5)已知:∠ABC=90°,∠ACB=30°,AD=2AC,CD=2BC,则∠D=30°.
故答案为:△ADE∽△ABC,$\frac{CD}{AC}$,$\frac{CE}{BC}$,$\frac{DE}{AB}$,∠C,PC•AB,30°.

点评 本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网