题目内容
20.(1)求证:∠A=∠AEB;
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.
分析 (1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE,然后利用等边对等角可得∠DCE=∠AEB,进而可得∠A=∠AEB;
(2)首先证明△DCE是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.
解答 证明:(1)∵四边形ABCD是⊙O的内接四边形,
∴∠A+∠BCD=180°,
∵∠DCE+∠BCD=180°,
∴∠A=∠DCE,
∵DC=DE,
∴∠DCE=∠AEB,
∴∠A=∠AEB;
(2)∵∠A=∠AEB,
∴△ABE是等腰三角形,
∵EO⊥CD,
∴CF=DF,
∴EO是CD的垂直平分线,
∴ED=EC,
∵DC=DE,
∴DC=DE=EC,
∴△DCE是等边三角形,
∴∠AEB=60°,
∴△ABE是等边三角形.
点评 此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.
练习册系列答案
相关题目
10.
已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周,设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )
| A. | B. | C. | D. |
5.计算:1-(-$\frac{1}{3}$)=( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | -$\frac{4}{3}$ |
12.
如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )
| A. | 1cm | B. | 2cm | C. | 3cm | D. | 4cm |
10.计算$\sqrt{8}$×$\sqrt{2}$的结果是( )
| A. | $\sqrt{10}$ | B. | 4 | C. | $\sqrt{6}$ | D. | 2 |