题目内容

17.抛物线y=$\frac{1}{2}$x2-kx+k与直线y=2x-1的两个交点距离最近时,k的取值为-1.

分析 设抛物线与直线的两个交点为(x1,y1)、(x2,y2),则y1=2x1-1,y2=2x2-1,由由$\left\{\begin{array}{l}{y=\frac{1}{2}{x}^{2}-kx+k}\\{y=2x-1}\end{array}\right.$得$\frac{1}{2}$x2-kx+k=2x-1,可得x1+x2=2(k+2),x1x2=2(k+1),将其代入到d=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\sqrt{5[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$,可得d=$\sqrt{20(k+1)^{2}+20}$,据此可得k=-1时,d取得最小值.

解答 解:设抛物线与直线的两个交点为(x1,y1)、(x2,y2),
其中y1=2x1-1,y2=2x2-1,
由$\left\{\begin{array}{l}{y=\frac{1}{2}{x}^{2}-kx+k}\\{y=2x-1}\end{array}\right.$得$\frac{1}{2}$x2-kx+k=2x-1,
即x2-2(k+2)x+2(k+1)=0,
∴x1+x2=2(k+2),x1x2=2(k+1),△=[-2(k+2)]2-4×1×2(k+1)≥0,即k2+2k+2≥0
∴k为全体实数,
则两交点间的距离d=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
=$\sqrt{({x}_{1}-{x}_{2})^{2}+(2{x}_{1}-1-2{x}_{2}+1)^{2}}$
=$\sqrt{({x}_{1}-{x}_{2})^{2}+4({x}_{1}-{x}_{2})^{2}}$
=$\sqrt{5[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$
=$\sqrt{5[4(k+2)^{2}-8(k+1)]}$
=$\sqrt{20(k+1)^{2}+20}$,
∴当k=-1时,d取得最小值,最小值为1,
故答案为:-1.

点评 本题主要考查抛物线与直线的交点问题、两点间的距离公式及二次函数的性质,根据题意得出两点间的距离关于k的表达式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网