题目内容
已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB=1,BC=
,CD=
.
(1)求tan∠ABD的值;
(2)求AD的长.

(1)求tan∠ABD的值;
(2)求AD的长.
(1)1;(2)
.
试题分析:(1)过点D作DE⊥BC于点E,根据∠C=60°求出CE、DE,再求出BE,从而得到DE=BE,然后求出∠EDB=∠EBD=45°,再求出∠ABD=45°,然后根据特殊角的三角函数值解答.
(2)过点A作AF⊥BD于点F,求出BF=AF=
试题解析:(1)如图, 作
∵在Rt△CDE 中,∠C=60°,CD=
∴
∵BC=
∴
∴
∴在Rt△BDE 中,∠EDB= ∠EBD=45º.
∵AB⊥BC,∠ABC=90º,
∴∠ABD=∠ABC-∠EBD=45º.
∴ tan∠ABD=1.
(2)如图,作
在Rt△ABF 中,∠ABF=45º, AB=1,
∴
∵在Rt△BDE 中,
∴
∴
∴在Rt△AFD 中,
练习册系列答案
相关题目