题目内容
如图,AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD= cm.
绝对值小于5的所有负整数的和是________.
比较-与-的大小:-______- (用“>”、“<”、或“ =”表示)
问题背景:“半角问题”:
(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究此“半角问题”的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;(直接写结论,不需证明)
探索延伸:当聪明的你遇到下面的问题该如何解决呢?
(2)若将(1)中“∠BAD=120°,∠EAF=60°”换为∠EAF=∠BAD.其它条件不变。如图1,试问线段EF、BE、FD具有怎样的数量关系,并证明.
(3)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,请直接写出线段EF、BE、FD它们之间的数量关系.(不需要证明)
(4)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.
如图,已知BC=DE、BC∥DE,点A、D、B、F在一条直线上,且AD=FB.
求证:AC∥EF.
电子钟镜子里的像如图所示,实际时间是____________。
如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE的长就是A、B的距离,这里判断△ACB≌△ECD的理由是( )
A.SAS B.ASA C.AAS D.SSS
平面直角坐标系下有序数对(2x﹣y,x+y)表示的点为(5,4),则x=___,y=___.
某同学练习推铅球,铅球推出后在空中飞行的路线是一条抛物线,铅球在离地面0.5米高的A处推出,推出后达到最高点B时的高度是2.5米,水平距离是4米,铅球在地面上点C处着地.
(1)根据如图所示的直角坐标系求抛物线的解析式;
(2)这个同学推出的铅球有多远?