题目内容
如图, 为⊙的直径, 为⊙外一点,且, 是⊙的弦, .
()求证: 是⊙的切线.
()若, ,求的长.
如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.
(1)求证:①PE=PD;②PE⊥PD;
(2)设AP=x,△PBE的面积为y.
①求出y关于x的函数关系式,并写出x的取值范围;
②当x取何值时,y取得最大值,并求出这个最大值.
下列运算正确的是( )
A. 2a2+3a3=5a5 B. a6÷a3=a2 C. (﹣a3)2=a6 D. (x+y)2=x2+y2
如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
2017年某市将有5万名学生参加中考,为了解这些考生的数学成绩,中考后将从中抽取2000名考生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( )
A. 2000名考生是总体的一个样本
B. 每个考生是个体
C. 这5万名考生的数学中考成绩的全体是总体
D. 统计中采用的调查方式是普查
初三(1)班要从甲、乙、丙、丁这名同学中随机选取名同学参加学校毕业生代表座谈会.求下列事件的概率:
()已确定甲参加,另外人恰好选中乙;
()随机选取名同学,恰好选中甲和乙.
如图,四边形内接于⊙, 、的延长线相交于点, 、的延长线相交于点.若,则__________ .
如图:矩形ABCD的顶点B、C在x轴的正半轴上,A、D在抛物线上,矩形的顶点均为动点,且矩形在抛物线与轴围成的区域里。
(1)设A点的坐标为(, ),试求矩形周长关于变量的函数表达式;
(2)是否存在这样的矩形,它的周长为9,试证明你的结论。
⊙O的半径为7cm,点P到圆心O的距离OP=10cm,则点P与⊙O的位置关系为( )
A. 点P在圆上 B. 点P在圆内 C. 点P在圆外 D. 无法确定