题目内容
将抛物线y=(x-2)2向上平移3个单位,再向右平移4个单位得到的抛物线是____________.
用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是________.
(1)如图,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )
A.平行四边形 B.菱形 C.矩形 D.正方形
(2)如图,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.
①求证:四边形AFF'D是菱形;
②求四边形AFF'D的两条对角线的长.
一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
解方程:
(1)4x2﹣6x﹣3=0(运用公式法)(2)(2x﹣3)2=5(2x﹣3)(运用分解因式法)
在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致所示中的( )
A. B. C. D.
用配方法解下列方程,配方正确的是( )
A. 2y2﹣4y﹣4=0可化为(y﹣1)2=4 B. x2﹣2x﹣9=0可化为(x﹣1)2=8
C. x2+8x﹣9=0可化为(x+4)2=16 D. x2﹣4x=0可化为(x﹣2)2=4
如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C两点.
(1)求证:PA•PB=PD•PC;
(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.
如图,平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.
(1)求菱形ABCD的边长;
(2)求双曲线的解析式.