题目内容
﹣()2=__.
已知二次函数y=x2-5x+m 的图像与轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
A. (-1,0) B. (4,0) C. (5,0) D. (-6,0)
若+(b+4)2=0,则点M(a,b)关于y轴的对称点的坐标为______
如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:
(1)四边形OCED是菱形.
(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.
已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为_______.
如图,矩形ABCD中,AB=3,两条对角线AC、BD所夹的钝角为120°,则对角线BD的长为
A. B. C. D.
已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:
(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?
(2)某物流公司现有31吨货物,计划同时租用A型车辆,B型车辆,一次运完,且恰好每辆车都载满货物请用含有的式子表示,并帮该物流公司设计租车方案;
(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.
已知方程组,则x﹣y的值为( )
A. 2 B. ﹣1 C. 12 D. ﹣4
在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为 人,扇形统计图中,希望参加活动D所占圆心角为 度,根据题中信息补全条形统计图.
(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?