题目内容
(1)写出该几何体的名称,并根据所示数据计算这个几何体的表面积;
(2)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.
考点:平面展开-最短路径问题,圆锥的计算,由三视图判断几何体
专题:
分析:(1)易得此几何体为圆锥,圆锥的全面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.
(2)将圆锥的侧面展开,设顶点为B',连接BB',AC.线段AC与BB'的交点为D,线段BD是最短路程
(2)将圆锥的侧面展开,设顶点为B',连接BB',AC.线段AC与BB'的交点为D,线段BD是最短路程
解答:解:(1)名称:圆锥,
利用三视图可获取此几何体是圆锥,其底面直径是4,母线长为6,
展开后为侧面为扇形,扇形半径为6,弧长为4π,
∴侧面积为12π,
底面是圆,
∴面积为4π,
∴全面积为16π,
(2)如图将圆锥侧面展开,得到扇形ABB′,则线段BD为所求的最短路程.
设∠BAB′=n°.
∵
=4π,
∴n=120即∠BAB′=120°.
∵C为弧BB′中点,
∴∠ADB=90°,∠BAD=60°,
∴BD=AB•sin∠BAD=6×
=3
∴最短距离:3
.
利用三视图可获取此几何体是圆锥,其底面直径是4,母线长为6,
展开后为侧面为扇形,扇形半径为6,弧长为4π,
∴侧面积为12π,
底面是圆,
∴面积为4π,
∴全面积为16π,
(2)如图将圆锥侧面展开,得到扇形ABB′,则线段BD为所求的最短路程.
设∠BAB′=n°.
∵
| nπ•6 |
| 180 |
∴n=120即∠BAB′=120°.
∵C为弧BB′中点,
∴∠ADB=90°,∠BAD=60°,
∴BD=AB•sin∠BAD=6×
| ||
| 2 |
| 3 |
∴最短距离:3
| 3 |
点评:本题考查了平面展开-最短路径问题,解题时注意把立体图形转化为平面图形的思维,圆锥表面积的计算公式.
练习册系列答案
相关题目