题目内容
在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为________.
x<-6
分析:首先转化成一般的不等式,然后解不等式即可.
解答:根据题意得:2x+12<0,
解得:x<-6.
故答案是:x<-6.
点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
分析:首先转化成一般的不等式,然后解不等式即可.
解答:根据题意得:2x+12<0,
解得:x<-6.
故答案是:x<-6.
点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
练习册系列答案
相关题目
在实数范围内定义一种运算“※”,其规则为a※b=
+
,根据这个规则,则方程x※(x+1)=0的解为( )
| 1 |
| a |
| 1 |
| b |
| A、1 | ||
| B、0 | ||
| C、无解 | ||
D、-
|