题目内容
如图,在?ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数是奇数的概率为( )。
A. B. C. D.
已知两根之和等于两根之积,则的值为( )
A. 1 B. -1 C. 2 D. -2
关于的一元二次方程的根的情况是( )
A. 有两不相等实数根 B. 有两相等实数根
C. 无实数根 D. 不能确定
方程化为一般形式,它的各项系数之和可能是( )
如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是_____
如图,点P是?ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
已知的半径是,直线与相交于、两点.是上的一个动点,若,则面积的最大值是________.
已知,.则的值是( )
A. 3 B. 2 C. 1 D. 0