题目内容
已知CD是Rt△ABC斜边上的高线,且AB=10,若BC=8,则cos∠ACD= ______ .
三角形的三个内角( )
A、至少有两个锐角 B、至少有一个直角
C、至多有两个钝角 D、至少有一个钝角
为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:
(1)①当x≤10时,y与x的关系式为: ;
②当x>10时,y与x的关系式为: ;
(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;
(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?
如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)如果AB=5,BC=6,求DE的长.
计算:(1)sin260°+cos260°-tan45°; (2)|-|+-4cos45°+2sin30°.
如图,△ABC中,P为AB上一点,在下列四个条件中,①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP·AB;④AB·CP=AP·CB,其中能满足△APC和△ACB相似的条件是( )
A、①②④ B、①③④ C、②③④ D、①②③
一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.
希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是( )
A. 2(x-1)+x=49
B. 2(x+1)+x=49
C. x-1+2x=49
D. x+1+2x=49
如图4所示,一座抛物线型拱桥,桥下水面宽度是4m,拱高是2m,当水面下降1m后,水面宽度是多少?(,结果保留0.1m)