题目内容

精英家教网如图所示,在Rt△POQ中,∠POQ=90°,OP:OQ=3:2,点Q在反比例函数y=
4
x
图象上,点P在反比例函数y=
k
x
图象上,则k的值是
 
分析:作QM⊥y轴,PN⊥y轴,分别与M,N两点,可以证得:∴△OQM∽△PON,根据相似三角形的性质即可证得ON•NP=9,根据反比例函数中k的几何意义即可求解.
解答:精英家教网解:作QM⊥y轴,PN⊥y轴,分别与M,N两点.
∵∠MOQ=90°
∴∠QOx+∠POx=90°
又∵∠MOQ+∠NOP=90°,∠NOP+∠OPN=90°
∴∠MQO=∠NOP,∠QOM=∠ONP
∴△OQM∽△PON
OM
NP
=
MQ
ON
=
OQ
OP
=
2
3

又∵MQ•OM=4
∴ON•NP=9
∴k=-9.
故答案是:-9.
点评:本题考查了反比例函数的性质,以及相似三角形的判定与性质,正确理解相似三角形的性质,理解反比例函数中k的意义是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网