题目内容

函数f(x)=x2+ax-3a-9对任意实数x恒有f(x)≥0,则f(1)=(  )
分析:f(x)=x2+ax-3a-9=(x+
a
2
2-(
a
2
+3)2≥-(
a
2
+3)2,由函数f(x)=x2+ax-3a-9对任意实数x恒有f(x)≥0,得a=-6,由此能求出f(1).
解答:解:f(x)=x2+ax-3a-9=(x+
a
2
2-(
a
2
+3)2≥-(
a
2
+3)2
而函数f(x)=x2+ax-3a-9对任意实数x恒有f(x)≥0,
a
2
+3=0,解得a=-6.
故f(x)=x2+ax-3a-9=x2-6x+9,
所以f(1)=4.
故选C.
点评:本题考查二次函数的性质及其应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网