题目内容
【题目】如图,四边形ABCD中,点E在边CD上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.
![]()
⑴用序号写出一个真命题(书写形式如:如果×××,那么××);并给出证明;
⑵用序号再写出三个真命题(不要求证明)
【答案】(1)如果①②③,那么④⑤,证明见解析(2)如果①②④,那么③⑤; 如果①③④,那么②⑤;如果①③⑤,那么②④
【解析】
(1)如果①②③,那么④⑤.过E点作EF∥AD,与AB交于点F,根据平行线的性质推出EF为梯形ABCD的中位线,根据平行线的性质和等量代换,即可推出∠4=∠3,AB=2EF,通过2EF=AD+BC,即可推出AB=AD+BC,(2)根据真命题的定义,写出命题即可.
(1)如果①②③,那么④⑤.
证明:延长AE交BC的延长线于F,
∵AD∥BC,∴∠ADE=∠FCE,又∵∠AED=∠CEF,DE=EC,∴△ADE≌△FCE.∴AD=CF,AE=EF.∵∠1=∠F,∠1 =∠2,∴∠2=∠F,∴AB=BF,∴∠3=∠4,∴AD+BC=CF+BC=BF=AB.
(2)如果①②④,那么③⑤; 如果①③④,那么②⑤;如果①③⑤,那么②④.
练习册系列答案
相关题目