题目内容

16.如图,已知OA=OC,OB=OD.
求证:AB∥CD.
证明:在△ABO和△CDO中,
$\left\{\begin{array}{l}{OA=OC}\\{∠AOB=()}\\{OB=OD}\end{array}\right.$,
∴△ABO≌△CDO(SAS )
∴∠A=∠C.
∴AB∥DC(内错角相等,两直线平行).

分析 已知条件OA=OC,OB=OD,再加上对顶角∠COD=∠AOB可利用SAS证明△DOC≌△BOA进而得到∠A=∠C,根据平行线的判定可得DC∥AB.

解答 证明:在△AOB和△COD中,
$\left\{\begin{array}{l}{OA=OC}\\{∠AOB=∠COD}\\{OB=OD}\end{array}\right.$,
∴△DOC≌△BOA(SAS),
∴∠A=∠C,
∴DC∥AB(内错角相等,两直线平行),
故答案为:SAS;∠C;内错角相等,两直线平行.

点评 此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网