ÌâÄ¿ÄÚÈÝ
£¨1£©Çó¡÷ADCµÄÃæ»ý£»
£¨2£©ÔÚÖ±Ïßl2ÉÏ´æÔÚÒìÓÚµãCµÄÁíÒ»µãP£¬Ê¹µÃ¡÷ADPÓë¡÷ADCµÄÃæ»ýÏàµÈ£¬ÔòµãPµÄ×ø±êΪ
£¨3£©ÈôµãHÎª×ø±êÆ½ÃæÄÚÈÎÒâÒ»µã£¬ÔÚ×ø±êÆ½ÃæÄÚÊÇ·ñ´æÔÚÕâÑùµÄµãH£¬Ê¹ÒÔA¡¢D¡¢C¡¢HΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãHµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÒ»´Îº¯Êý×ÛºÏÌâ
רÌ⣺ѹÖáÌâ
·ÖÎö£º£¨1£©Áîy=0Çó³öµãDµÄ×ø±ê£¬Çó³öADµÄ³¤£¬ÉèÖ±Ïßl2µÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏߵĽâÎöʽ£¬ÔÙÁªÁ¢Á½Ö±Ïß½âÎöʽÇó³öµãCµÄ×ø±ê£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½ÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
£¨2£©¸ù¾ÝµÈµ×µÈ¸ßµÄÈý½ÇÐεÄÃæ»ýÏàµÈÇó³öµãPµÄ×Ý×ø±ê£¬È»ºó´úÈëÖ±Ïßl2µÄ½âÎöʽ¼ÆËã¼´¿ÉµÃ½â£»
£¨3£©¸ù¾ÝƽÐÐËıßÐÎµÄ¶Ô±ßÆ½ÐÐÇÒÏàµÈ£¬·ÖAC¡¢CDÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱд³öµãHµÄ×ø±ê£¬ADÊǶԽÇÏßʱ£¬¸ù¾ÝƽÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·Ö£¬ÏÈÇó³öADµÄÖеã×ø±ê£¬ÔÙ¸ù¾ÝÖе㹫ʽÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
£¨2£©¸ù¾ÝµÈµ×µÈ¸ßµÄÈý½ÇÐεÄÃæ»ýÏàµÈÇó³öµãPµÄ×Ý×ø±ê£¬È»ºó´úÈëÖ±Ïßl2µÄ½âÎöʽ¼ÆËã¼´¿ÉµÃ½â£»
£¨3£©¸ù¾ÝƽÐÐËıßÐÎµÄ¶Ô±ßÆ½ÐÐÇÒÏàµÈ£¬·ÖAC¡¢CDÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱд³öµãHµÄ×ø±ê£¬ADÊǶԽÇÏßʱ£¬¸ù¾ÝƽÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·Ö£¬ÏÈÇó³öADµÄÖеã×ø±ê£¬ÔÙ¸ù¾ÝÖе㹫ʽÁÐʽ¼ÆËã¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©Áîy=0£¬Ôò3x-3=0£¬
½âµÃx=1£¬
¡àµãD£¨1£¬0£©£¬
¡àAD=4-1=3£¬
ÉèÖ±Ïßl2µÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
Ôò
£¬
½âµÃ
£¬
¡àÉèÖ±Ïßl2µÄ½âÎöʽΪy=-
x+6£¬
ÁªÁ¢
£¬
½âµÃ
£¬
¡àµãCµÄ×ø±êΪ£¨2£¬3£©£¬
¡à¡÷ADCµÄÃæ»ý=
¡Á3¡Á3=
£»
£¨2£©¡ß¡÷ADPÓë¡÷ADCµÄÃæ»ýÏàµÈ£¬µãPÊÇÒìÓÚµãCµÄµã£¬
¡àµãPµÄ×Ý×ø±êΪ-3£¬
¡à-
x+6=-3£¬
½âµÃx=6£¬
¡àµãP£¨6£¬-3£©£»
¹Ê´ð°¸Îª£º£¨6£¬-3£©£»
£¨3£©¢ÙACÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬CH=AD=3£¬
µãHµÄºá×ø±êΪ2+3=5£¬
ËùÒÔ£¬µãHµÄ×ø±êΪ£¨5£¬3£©£¬
¢ÚCDÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬CH=AD=3£¬
µãHµÄºá×ø±êÊÇ2-3=-1£¬
ËùÒÔ£¬µãHµÄ×ø±êΪ£¨-1£¬3£©£¬
¢ÛADÊǶԽÇÏßʱ£¬
AD=
£¬
ËùÒÔ£¬ADµÄÖеã×ø±êΪ£¨
£¬0£©£¬
¡ßƽÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·Ö£¬
¡àÉèµãH£¨x£¬y£©£¬Ôò
=
£¬
=0£¬
½âµÃx=3£¬y=-3£¬
¡àµãHµÄ×ø±êΪ£¨3£¬-3£©£¬
×ÛÉÏËùÊö£¬´æÔÚµãH£¨5£¬3£©»ò£¨-1£¬3£©»ò£¨3£¬-3£©£¬Ê¹ÒÔA¡¢D¡¢C¡¢HΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
½âµÃx=1£¬
¡àµãD£¨1£¬0£©£¬
¡àAD=4-1=3£¬
ÉèÖ±Ïßl2µÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
Ôò
|
½âµÃ
|
¡àÉèÖ±Ïßl2µÄ½âÎöʽΪy=-
| 3 |
| 2 |
ÁªÁ¢
|
½âµÃ
|
¡àµãCµÄ×ø±êΪ£¨2£¬3£©£¬
¡à¡÷ADCµÄÃæ»ý=
| 1 |
| 2 |
| 9 |
| 2 |
£¨2£©¡ß¡÷ADPÓë¡÷ADCµÄÃæ»ýÏàµÈ£¬µãPÊÇÒìÓÚµãCµÄµã£¬
¡àµãPµÄ×Ý×ø±êΪ-3£¬
¡à-
| 3 |
| 2 |
½âµÃx=6£¬
¡àµãP£¨6£¬-3£©£»
¹Ê´ð°¸Îª£º£¨6£¬-3£©£»
£¨3£©¢ÙACÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬CH=AD=3£¬
µãHµÄºá×ø±êΪ2+3=5£¬
ËùÒÔ£¬µãHµÄ×ø±êΪ£¨5£¬3£©£¬
¢ÚCDÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬CH=AD=3£¬
µãHµÄºá×ø±êÊÇ2-3=-1£¬
ËùÒÔ£¬µãHµÄ×ø±êΪ£¨-1£¬3£©£¬
¢ÛADÊǶԽÇÏßʱ£¬
| 1 |
| 2 |
| 3 |
| 2 |
ËùÒÔ£¬ADµÄÖеã×ø±êΪ£¨
| 5 |
| 2 |
¡ßƽÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·Ö£¬
¡àÉèµãH£¨x£¬y£©£¬Ôò
| x+2 |
| 2 |
| 5 |
| 2 |
| y+3 |
| 2 |
½âµÃx=3£¬y=-3£¬
¡àµãHµÄ×ø±êΪ£¨3£¬-3£©£¬
×ÛÉÏËùÊö£¬´æÔÚµãH£¨5£¬3£©»ò£¨-1£¬3£©»ò£¨3£¬-3£©£¬Ê¹ÒÔA¡¢D¡¢C¡¢HΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷ÒªÀûÓÃÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬ÁªÁ¢Á½Ö±Ïß½âÎöʽÇó½»µã×ø±ê£¬µÈµ×µÈ¸ßµÄÈý½ÇÐεÄÃæ»ýÏàµÈ£¬ÒÔ¼°Æ½ÐÐËıßÐεÄÐÔÖÊ£¬ÄѵãÔÚÓÚ£¨3£©¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ·ÖÇé¿öÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¼×¡¢ÒÒÁ½ÈËÔÚ400Ã׵Ļ·ÐÎÅܵÀÉÏÅܲ½£¬¼×ÿ·ÖÖÓÅÜ120Ã×£¬ÒÒÿ·ÖÖÓÅÜ100Ã×ËûÃÇ´ÓͬһµØµãͬÏò³ö·¢£¬¶àÉÙ·ÖÖÓËûÃǵÚÒ»´ÎÏàÓö£¿£¨¡¡¡¡£©
| A¡¢10·Ö | B¡¢20·Ö |
| C¡¢30·Ö | D¡¢40·Ö |
Ò»´Îº¯Êýy=kx+2µÄͼÏóÓëyÖáµÄ½»µã×ø±êÊÇ£¨¡¡¡¡£©
| A¡¢£¨0£¬2£© |
| B¡¢£¨0£¬1£© |
| C¡¢£¨2£¬0£© |
| D¡¢£¨1£¬0£© |