题目内容
观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
(本题满分6分)端午节吃粽子是中华民族的传统习惯.小祥的妈妈从超市买了一些粽子回家,
用不透明袋子装着这些粽子(粽子除内部馅料不同外,其他一切相同),小祥问买了什么样的粽子,妈妈说:
“其中香肠馅粽子两个,剩余的都是绿豆馅粽子,若你从中任意拿出一个是香肠馅粽子的概率为”.
(1)袋子中绿豆馅粽子有 个;
(2)小祥第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树状图或列表法,求小祥两次拿到的都是绿豆馅粽子的概率.
如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点 B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,……,
按此做法进行下去,则点A8的坐标是
A.(15,0) B.(16,0) C.(8,0) D.(,0)
如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD= .
如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿点A→B方向运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿B→C→D方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为,则与的函数关系的图象是( )
解方程(组):(1)
(2)
(3)x-2x=2x+1;
(4)x﹣3x=0
(5)
已知关于x的一元二次方程2x-3kx+4=0的一个根是1,则k=_____________.
如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为( )
A.4.2米 B.4.8米 C.6.4米 D.16.8米