题目内容

【题目】如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度是多少?

【答案】20-28

【解析】分析:利用30°的正切值即可求得AE长,进而可求得CE长.CE减去DE长即为信号塔CD的高度.

详解:根据题意得:AB=8米,DE=20米,∠A=30°,∠EBC=45°,

Rt△ADE中,AE=DE=20米,

∴BE=AE﹣AB=20﹣8(米),

Rt△BCE中,CE=BEtan45°=(20﹣8)×1=20﹣8(米)

∴CD=CE﹣DE=20﹣8﹣20=20﹣28(米).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网