题目内容

如图,AB是⊙O的直径,AC=AB,⊙O交BC于D.DE⊥AC于E,DE是⊙O的切线吗?为什么?

答:DE是⊙O的切线,理由如下:
证明:连接OD,
∵OD=OB,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠C=∠ODB,
∴OD∥AC,
∴∠ODE=∠DEC;
∵DE⊥AC,
∴∠DEC=90°,
∴∠ODE=90°,
即DE⊥OD,
∴DE是⊙O的切线.
分析:DE是⊙O的切线,接OD,只要证明OD⊥DE即可.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网