题目内容

如图,在等边△ABC中,D,E分别AC,AB是上的点,且AD=BE,CE与BD交于点P,则∠BPE的度数为(  )
A、75°B、60°
C、55°D、45°
考点:全等三角形的判定与性质,等边三角形的性质
专题:
分析:根据题干条件:AC=BC,BD=CE,∠A=∠CBE,可以判定△ABD≌△BCE,即可得到∠DBA=∠BCE,又知∠BPE=∠BCE+∠CBP,可得答案.
解答:解:∵△ABC是等边三角形,
∴AC=BC,∠A=∠CBE=60°,
又知BD=CE,
在△ABD和△CBE中,
AC=BC
∠A=∠CBE
AD=BE

∴△ABD≌△BCE(SAS),
∴∠DBA=∠BCE,
∵∠BPE=∠BCE+∠CBP,
∴∠BPE=∠ABD+∠CBP=∠ABC=60°,
故选B.
点评:本题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能看出∠APE=∠ABP+∠BAP,还要熟练掌握三角形全等的判定与性质定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网