题目内容
(12分)如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
![]()
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长及H点的坐标;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.
(1)(-1,
);(2)H(
,
);(3)当t =-
时,△EFK的面积最大,最大面积为
,此时K(-
,
).
【解析】
试题分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;
(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;求得直线BC的解析式,然后求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;
(3)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.
试题解析:(1)由题意,得
, 解得
,b =-1.
所以抛物线的解析式为
,顶点D的坐标为(-1,
).
(2)设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH + CH最小,即最小为
DH + CH = DH + HB = BD =
.而
.
∴ △CDH的周长最小值为CD + DR + CH =
.
设直线BD的解析式为y = k1x + b,则
,解得
,b1 = 3.
所以直线BD的解析式为y =
x + 3.
由于BC = 2
,CE =
=
,Rt△CEG∽△COB,
得 CE : CO = CG : CB,所以 CG = 2.5,GO = 1.5.G(0,1.5).
同理可求得直线EF的解析式为y=
x +
.
联立直线BD与EF的方程,解得使△CDH的周长最小的点H(
,
).
(3)设K(t,
),xF<t<xE.过K作x轴的垂线交EF于N.
则 KN = yK-yN =
-(
t +
)=
.
所以 S△EFK = S△KFN + S△KNE =
KN(t + 3)+
KN(1-t)= 2KN = -t2-3t + 5 =-(t +
)2 +
.
即当t =-
时,△EFK的面积最大,最大面积为
,此时K(-
,
).
考点:二次函数的解析式的确定;轴对称的性质;相似三角形的判定和性质.
考点分析: 考点1:二次函数 定义:一般地,如果
①所谓二次函数就是说自变量最高次数是2;
②二次函数
③二次函数
(1)一般式:
(2)顶点式:
(3)当抛物线
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。 二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成
- 题型:
- 难度:
- 考核:
- 年级: