题目内容

如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间面积最大的是________.

S3
分析:过O点作OD⊥BC于D,根据垂径定理得到BD=DC,设⊙O的半径为R,由∠COA=60°,得∠B=30°,根据含30度的直角三角形三边的关系得到OD=R,BD=R,因此可得到S2,根据扇形的面积公式得到S1,S扇形COB,这样就能得到S3=S扇形COB-S2,最后比较大小即可得到答案.
解答:解:过O点作OD⊥BC于D,如图,设⊙O的半径为R,
则BD=DC,
∵∠COA=60°,
∴∠B=30°,
∴OD=R,BD=R,
∴BC=R,
∴S2=R•R=R2
S1==R2
S3=-R2=(-)R2
-
∴S2<S1<S3
故答案为:S3
点评:本题考查了扇形的面积公式:S=;也考查了三角形的面积公式以及含30度的直角三角形三边的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网