题目内容


如图,直角梯形ABCD,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;

(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)
(2)若EF=6,求直角梯形ABCD的面积;


   (1)证明:∵△ADF为等边三角形,
              ∴AF=AD,∠FAD=60°

             ∵∠DAB=90°,∠EAD=15°,AD=AB
             ∴∠FAE=∠BAE=75°,AB=AF,

             ∵AE为公共边
             ∴△FAE≌△BAE    

             ∴EF=EB        

(2)菱形-------3分(写平行四边形2分)

   (3)由FA=AB,∠FAE=∠EAB=75°,EA是公共边,
        ∴△FAE≌△BAE(SAS)             

        ∴BE=EF=6,       
        又∠AEB=∠AEF=75°,
        ∴BE=AB=6,           
        过C作CM⊥AB于M,
       CM=AD=6,∠ABC=60°,
       ∴BM=6/√3=2√3,
        ∴ CD=6-2√3.     
        ∴梯形ABCD面积=(CD+AB)×AD÷2
                        =(6-2√3+6)×6÷2
                         =36-6√3          


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网