题目内容

如图,∠AOB=90°,0C⊥OD,且∠BOC=
23
∠AOC,求∠BOD,∠AOD的度数.
分析:根据互余得到∠BOC+∠AOC=90°,把∠BOC=
2
3
∠AOC代入可计算出∠AOC=54°,由于0C⊥OD,则∠DOC=90°,根据等角的余角相等得到∠BOD=54°,然后利用∠AOD=∠DOC+∠AOC计算.
解答:解:∵∠BOC+∠AOC=90°,
而∠BOC=
2
3
∠AOC,
2
3
∠AOC+∠AOC=90°,
∴∠AOC=54°,
∵0C⊥OD,
∴∠DOC=90°,
∴∠BOD=∠AOC=54°,∠AOD=∠DOC+∠AOC=144°,
∴∠BOD,∠AOD的度数分别为54°,144°.
点评:本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角;如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网