题目内容
已知
=1-
,
=
-
,
=
-
,
=
-
…
(1)根据以上等式推导
+
+
+…+
的最后结果.
(2)计算
+
+
+…+
的值.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
(1)根据以上等式推导
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
(2)计算
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
分析:(1)根据题目信息,把每一项都拆成两项运算式的形式,然后相加即可得解;
(2)取n=99,代入(1)的结论进行计算即可得解.
(2)取n=99,代入(1)的结论进行计算即可得解.
解答:解:(1)
+
+
+…+
,
=(1-
)+(
-
)+(
-
)+(
-
)+…+(
-
),
=1-
,
=
;
(2)根据(1)的结论,当n=99时,
+
+
+…+
,
=1-
,
=
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(2)根据(1)的结论,当n=99时,
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
=1-
| 1 |
| 100 |
=
| 99 |
| 100 |
点评:本题考查了有理数的混合运算,根据题目提供的信息,把每一项都拆成两项差的形式,从而找出求解规律是解题的关键.
练习册系列答案
相关题目