题目内容
在,|﹣1.7|,1.7这三个实数中,最小的是 .
如图,PA和PB是⊙O的切线,点A和点B是切点,若OA=9,∠P=40°,则的长为 (结果保留π).
如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.
如图,已知直线l1∥l2,且l3与l1,l2分别交于A,B两点,l4与l1,l2相交于C,D两点,点P在直线AB上.
(1)【探究1】如图1,当点P在A,B两点间滑动时,试探究∠1,∠2,∠3之间的关系是否发生变化?并说明理由;
(2)【应用】如图2,A点在B处北偏东32°方向,A点在C处的北偏西56°方向,应用探究1的结论求出∠BAC的度数.
(3)【探究2】如果点P在A,B两点外侧运动时,试探究∠ACP,∠BDP,∠CPD之间的关系,并说明理由.
计算:
(1)
(2)(+)
(3)|1﹣|+|﹣|
如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于( )
A.50° B.60° C.65° D.90°
如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D为BC的中点,动点P从点A出发,以每秒1个单位长度的速度沿线段AB向点B运动,当点P离开点A后,过点P作PE⊥AB交BC于点E,过点E作EF⊥AC于F,设点P运动时间为t(秒),矩形PEFA与△ADE重叠部分的面积为S平方单位长度.
(1)PE的长为 (用含t的代数式表示);
(2)求S与t之间的函数表达式;
(3)求S的最大值及S取得最大值时t的值;
(4)当S为△ABC面积的时,t的值有 个.
如图,AB、CD是⊙O弦,且AB⊥CD,若∠CDB=50°,则∠ACD的大小为( )
A.30° B.35° C.40° D.50°
如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m从点C开始沿y轴向下平移.
(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为 _________ ;
(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m的取值范围 _________.