ÌâÄ¿ÄÚÈÝ
5£®²Ù×÷1£º½«Õý·½ÐÎABCDÑØ¹ýµãBµÄÖ±ÏßÕÛµþ£¬Ê¹ÕÛµþºóµÄµãCÂäÔÚ¶Ô½ÇÏßBDÉϵĵãG´¦£¬ÕÛºÛΪBH£®
²Ù×÷2£º½«ADÑØ¹ýµãGµÄÖ±ÏßÕÛµþ£¬Ê¹µãA£¬µãD·Ö±ðÂäÔÚ±ßAB£¬CDÉÏ£¬ÕÛºÛΪEF£¬ÔòËıßÐÎBCEFΪ$\sqrt{2}$¾ØÐΣ®
Ö¤Ã÷£ºÉèÕý·½ÐÎABCDµÄ±ß³¤Îª1£®
ÔòBD=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$£®
ÓÉÕÛµþÐÔÖÊ¿ÉÖªBG=BC=1£¬¡ÏAFE=¡ÏBFE=90¡ã£¬ÔòËıßÐÎBCEFΪ¾ØÐΣ®
¡à¡ÏA=¡ÏBFE£®¡àEF¡ÎAD£®¡à$\frac{BG}{BD}$=$\frac{BF}{AB}$£¬¼´$\frac{1}{\sqrt{2}}$=$\frac{BF}{1}$£¬¡àBF=$\frac{1}{\sqrt{2}}$£®
¡àBC£ºBF=1£º$\frac{1}{\sqrt{2}}$=$\sqrt{2}£º1$£®¡àËıßÐÎBCEFΪ$\sqrt{2}$¾ØÐΣ®
ÔĶÁÒÔÉÏÄÚÈÝ£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚͼ¢ÙÖУ¬ËùÓÐÓëCHÏàµÈµÄÏß¶ÎÊÇGH£¬DG£¬tan¡ÏHBCµÄÖµÊÇ$\sqrt{2}$-1£»
£¨2£©ÒÑÖªËıßÐÎBCEFΪ$\sqrt{2}$¾ØÐΣ¬Ä£·ÂÉÏÊö²Ù×÷£¬µÃµ½ËıßÐÎBCMN£¬Èçͼ¢Ú£®ÇóÖ¤£ºËıßÐÎBCMNÊÇ$\sqrt{3}$¾ØÐΣ»
£¨3£©½«Í¼¢ÚÖÐ$\sqrt{3}$¾ØÐÎBCMNÑØÓã¨2£©Öеķ½Ê½²Ù×÷3´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{n}$¾ØÐΡ±£®ÇónµÄÖµ£®
·ÖÎö £¨1£©ÓÉÕÛµþ¼´¿ÉµÃµ½DG=GH=CH£¬ÉèHC=x£¬ÔòÓÐDG=GH=x£¬DH=$\sqrt{2}$x£¬¸ù¾ÝDC=DH+CH=1£¬¾Í¿ÉÇó³öHC£¬È»ºóÔËÓÃÈý½Çº¯ÊýµÄ¶¨Òå¼´¿ÉÇó³ötan¡ÏHBCµÄÖµ£»
£¨2£©Ö»Ðè½è¼øÔĶÁÖÐÖ¤Ã÷¡°ËıßÐÎBCEFΪ$\sqrt{2}$¾ØÐΡ±µÄ·½·¨¾Í¿É½â¾öÎÊÌ⣻
£¨3£©Í¬£¨2£©ÖеÄÖ¤Ã÷¿ÉµÃ£º½«$\sqrt{3}$¾ØÐÎÑØÓã¨2£©Öеķ½Ê½²Ù×÷1´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{4}$¾ØÐΡ±£¬½«$\sqrt{4}$¾ØÐÎÑØÓã¨2£©Öеķ½Ê½²Ù×÷1´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{5}$¾ØÐΡ±£¬½«$\sqrt{5}$¾ØÐÎÑØÓã¨2£©Öеķ½Ê½²Ù×÷1´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{6}$¾ØÐΡ±£¬Óɴ˾Ϳɵõ½nµÄÖµ£®
½â´ð ½â£º£¨1£©ÓÉÕÛµþ¿ÉµÃ£º
DG=HG£¬GH=CH£¬
¡àDG=GH=CH£®
ÉèHC=x£¬ÔòDG=GH=x£®
¡ß¡ÏDGH=90¡ã£¬
¡àDH=$\sqrt{2}$x£¬
¡àDC=DH+CH=$\sqrt{2}$x+x=1£¬
½âµÃx=$\sqrt{2}$-1£¬
¡àtan¡ÏHBC=$\frac{HC}{BC}$=$\frac{\sqrt{2}-1}{1}$=$\sqrt{2}$-1£¬
¹Ê´ð°¸Îª£ºGH¡¢DG£¬$\sqrt{2}$-1£»
£¨2£©¡ßBC=1£¬EC=BF=$\frac{\sqrt{2}}{2}$£¬
¡àBE=$\sqrt{E{C}^{2}+B{C}^{2}}$=$\frac{\sqrt{6}}{2}$£¬
ÓÉÕÛµþ¿ÉµÃBP=BC=1£¬¡ÏFNM=¡ÏBNM=90¡ã£¬¡ÏEMN=¡ÏCMN=90¡ã£®
¡ßËıßÐÎBCEFÊǾØÐΣ¬
¡à¡ÏF=¡ÏFEC=¡ÏC=¡ÏFBC=90¡ã£¬
¡àËıßÐÎBCMNÊǾØÐΣ¬¡ÏBNM=¡ÏF=90¡ã£¬
¡àMN¡ÎEF£¬
¡à$\frac{BP}{BE}$=$\frac{BN}{BF}$£¬¼´BP•BF=BE•BN£¬
¡à1¡Á$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{2}$BN£¬
¡àBN=$\frac{1}{\sqrt{3}}$£¬
¡àBC£ºBN=1£º$\frac{1}{\sqrt{3}}$=$\sqrt{3}$£º1£¬
¡àËıßÐÎBCMNÊÇ$\sqrt{3}$µÄ¾ØÐΣ»
£¨3£©Í¬Àí¿ÉµÃ£º
½«$\sqrt{3}$¾ØÐÎÑØÓã¨2£©Öеķ½Ê½²Ù×÷1´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{4}$¾ØÐΡ±£¬
½«$\sqrt{4}$¾ØÐÎÑØÓã¨2£©Öеķ½Ê½²Ù×÷1´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{5}$¾ØÐΡ±£¬
½«$\sqrt{5}$¾ØÐÎÑØÓã¨2£©Öеķ½Ê½²Ù×÷1´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{6}$¾ØÐΡ±£¬
ËùÒÔ½«Í¼¢ÚÖеÄ$\sqrt{3}$¾ØÐÎBCMNÑØÓã¨2£©Öеķ½Ê½²Ù×÷3´Îºó£¬µÃµ½Ò»¸ö¡°$\sqrt{6}$¾ØÐΡ±£¬
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖá¶Ô³ÆµÄÐÔÖÊ¡¢Õý·½ÐεÄÐÔÖÊ¡¢¾ØÐεÄÅж¨ÓëÐÔÖÊ¡¢Æ½ÐÐÏß·ÖÏ߶γɱÈÀý¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬¿¼²éÁËÔĶÁÀí½âÄÜÁ¦¡¢²Ù×÷ÄÜÁ¦¡¢¹éÄÉ̽¾¿ÄÜÁ¦¡¢ÍÆÀíÄÜÁ¦£¬ÔËÓÃÒÑÓоÑé½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊÇÒ»µÀºÃÌ⣮
| ÄêÁä | 13 | 14 | 15 | 16 | 17 | 18 |
| ÈËÊý | 4 | 5 | 6 | 6 | 7 | 2 |
| A£® | ºÍ | B£® | г | C£® | Ïå | D£® | Ñô |
| A£® | ¡÷OABÊǵȱßÈý½ÇÐÎ | |
| B£® | ÏÒACµÄ³¤µÈÓÚÔ²ÄÚ½ÓÕýÊ®¶þ±ßÐεı߳¤ | |
| C£® | OCƽ·ÖÏÒAB | |
| D£® | ¡ÏBAC=30¡ã |
| A£® | y=-3£¨x-1£©2 | B£® | y=-3£¨x+1£©2 | C£® | y=-3£¨x-1£©2+2 | D£® | y=-3£¨x-1£©2-2 |
| A£® | a+b=0 | B£® | ab=1 | C£® | a¡Âb=-l | D£® | a£¾0£¬b£¼0 |
| A£® | Èà | B£® | ¸ü | C£® | »î | D£® | Éú |