题目内容
考点:等腰梯形的判定
专题:
分析:首先证明∠A=∠B,再根据同一底上两个角相等的梯形是等腰梯形可得四边形ABEF是等腰梯形.
解答:解:四边形ABEF是等腰梯形;
理由:∵∠C=36°,∠B=72°,
∴∠A=180°-36°-72°=72°,
∴∠A=∠B,
∵EF∥AB,
∴四边形ABEF是等腰梯形.
理由:∵∠C=36°,∠B=72°,
∴∠A=180°-36°-72°=72°,
∴∠A=∠B,
∵EF∥AB,
∴四边形ABEF是等腰梯形.
点评:此题主要考查了等腰梯形的判定,关键是掌握等腰梯形的判定定理.同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形.
练习册系列答案
相关题目
| A、1 | B、2 | C、3 | D、4 |
下列说法不正确的是( )
| A、任何一个有理数的绝对值都是正数 |
| B、0既不是正数也不是负数 |
| C、有理数可以分为正有理数,负有理数和零 |
| D、0的绝对值等于0 |