题目内容
“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是( )
![]()
A. 1:2 B. 1:4 C. 1:5 D. 1:10
C 【解析】试题解析:∵直角三角形的两条直角边的长分别是2和4, ∴小正方形的边长为2, 根据勾股定理得:大正方形的边长=, ∴. 故选C.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,若BC=18,DE=8,则△BCE的面积等于( )
![]()
A. 36 B. 54 C. 63 D. 72
查看答案如图,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是( )
![]()
A. △ABD≌△ACD B. AD为△ABC的高线 C. AD为△ABC的角平分线 D. △ABC是等边三角形
查看答案下列命题中是真命题的是( )
A. 确定性事件发生的概率为1;
B. 平分弦的直径垂直于弦;
C. 正n边形都是轴对称图形,并且有n条对称轴;
D. 两边及其一边的对角对应相等的两个三角形全等。
查看答案用a、b、c作三角形的三边,其中不能构成直角三角形的是( )
A. a2=(b+c)(b﹣c) B. a:b:c=1:
:2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
![]()
A. (1)(2)(3) B. (1)(3)(4) C. (2)(3)(4) D. (1)(2)(4)
查看答案 试题属性- 题型:单选题
- 难度:中等
若把分式
中的x和y都扩大3倍,那么分式的值( )
A. 扩大3倍 B. 不变 C. 缩小3倍 D. 缩小6倍
C 【解析】试题解析:将3x、3y代入原式,则原式=,所以缩小到原来的, 故选C.与分式
相等的是( )
A.
B.
C.
D. ![]()
任意给定一个非零数,按下列程序计算,最后输出的结果是( )
![]()
A. m B. m-2 C. m+1 D. m2+1
查看答案下列运算正确的是( )
A. m2(mn-3n+1)=m3n-3m2n B. (-3ab2)2=-9a2b4
C. (-a+b)(-a-b)=b2-a2 D. 3x2y÷xy=3x
查看答案计算(ab2)3的结果,正确的是( )
A. a3b6 B. a3b5 C. ab6 D. ab5
查看答案如图,矩形OABC的顶点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了
秒.
(1)当
时,求PC的长;
(2)当
为何值时,△NPC是以PC为腰的等腰三角形?
![]()
- 题型:单选题
- 难度:中等
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ______.
4 【解析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离. 【解析】 二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.直线y=x+3上有一点P(3,a),则点P关于原点的对称点
为___________.
如图,两个反比例函数
和
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为( )
![]()
A. 3 B. 4 C.
D. 5
如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案某同学在用描点法画二次函数y=
+bx+c的图象时,列出了下面的表格:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣11 | ﹣2 | 1 | ﹣2 | ﹣5 | … |
由于粗心,他算错了其中一个y值,则这个错误的数值是( ).
A.﹣11 B.﹣2 C.1 D.﹣5
查看答案若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( )
A. 240° B. 120° C. 180° D. 90°
查看答案 试题属性- 题型:填空题
- 难度:中等
如图,△ABC和△ABD中,∠C=∠D=Rt∠,E是BC边上的中线.请你说明CE=DE的理由.
![]()
如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
![]()
如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?
查看答案解不等式组:
,并把解集在数轴上表示出来.
![]()
点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
查看答案将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是 .
![]()
- 题型:解答题
- 难度:中等
看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
![]()
为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.
查看答案一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=________
查看答案如图,在△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数是______.
![]()
如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F= ______度,DE= ____cm.
![]()
“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是( )
![]()
A. 1:2 B. 1:4 C. 1:5 D. 1:10
查看答案 试题属性- 题型:解答题
- 难度:中等
如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
![]()
A. (1)(2)(3) B. (1)(3)(4) C. (2)(3)(4) D. (1)(2)(4)
B 【解析】①中作∠B的角平分线即可; ③过A点作BC的垂线即可; ④中以A为顶点AB为一边在三角形内部作一个72度的角即可; 只有②选项不能被一条直线分成两个小等腰三角形. 故选B.如图,PB⊥AB于B,PC⊥AC于C,且PB=PC,则△APB≌△APC的理由是( )
![]()
A. SAS B. ASA C. HL D. AAS
查看答案如图,在△ABC中,AB=AC=5,P是BC边上除B,C点外的任意一点,则代数式AP2+PB·PC等于 ( )
![]()
A. 25 B. 15 C. 20 D. 30
查看答案如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
![]()
A. x<-2 B. -2<x<-1 C. -2<x<0 D. -1<x<0
查看答案若直线y=3x+6与直线y=2x+4的交点坐标为(a , b),则解为
的方程组是( )
A.
B.
C.
D. ![]()
如图,已知等边△ABC中,D为边AC上一点.
(1)以BD为边作等边△BDE,连接CE,求证:AD=CE;
(2)如果以BD为斜边作Rt△BDE,且∠BDE=30°,连接CE并延长,与AB的延长线交于F点,求证:AD=BF;
![]()
- 题型:单选题
- 难度:中等
商场某种商品平均每天可销售20件,每件盈利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?此时,每件衬衫盈利多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?
(1)每件衬衫应降价20元,每件衬衫盈利20元;(2)每件衬衫降价15元,商场平均每天盈利最多. 【解析】试题分析:(1)根据题意可以列出相应的方程,从而可以解答本题; (2)根据题意可以列出相应的函数关系式,将函数关系式化为顶点式即可解答本题. 试题解析:(1)设每件商品降价x元, 由题意得,(40-x)(20+2x)=1200 解得:x1=20,x2=10 ...如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连结BD.
(1)若AB=3,BC=4,求边BD的长;
(2)取BC的中点E,连结ED,试证明ED与⊙O相切.
![]()
某校团委为积极参与“陶行知杯.全国书法大赛”现场决赛,向学校学生征集书画作品,今年3月份举行了“书画比赛”初赛,初赛成绩评定为A,B,C,D,E五个等级.该校七年级书法班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题.
![]()
(1)该校七年级书法班共有 名学生;扇形统计图中C等级所对应扇形的圆心角等于 度,并补全条形统计图;
(2)A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生参加“陶行知杯.全国书法大赛”现场决赛,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.
查看答案如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△A′B′C′,并写出C′的坐标;
(2)求弧
的长.
![]()
解方程:(1)
(2)
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD= .
![]()
- 题型:解答题
- 难度:中等
用配方法解方程x2+6x+4=0,下列变形正确的是( )
A. (x+3)2=﹣4 B. (x﹣3)2=4 C. (x+3)2=5 D. (x+3)2=±![]()
下列事件中,属于必然事件的是( )
A.二次函数的图象是抛物线
B.任意一个一元二次方程都有实数根
C.三角形的外心在三角形的外部
D.投掷一枚均匀的硬币100次,正面朝上的次数为50次
查看答案下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D. ![]()
下列关于x的方程中,一定是一元二次方程的是( )
A. (m﹣3)x2﹣
x﹣2 B. k2x+5k+6=0; C.
x2﹣
x﹣
=0; D. 3x2+
﹣2=0
抛物线
的顶点坐标是( )
A. (3, 1) B. (3,-1) C. (-3, 1) D. (-3, -1)
查看答案解下列方程
(1)(x+1)2﹣9=0
(2)(x﹣1)3=8.
查看答案 试题属性- 题型:单选题
- 难度:简单
三角形两边长分别为3和6,第三边是方程x2﹣13x+36=0的根,则三角形的周长为 .
13 【解析】 试题分析:利用因式分解法解方程得到x1=4,x2=9,再利用三角形三边的关系得到x=4,然后计算三角形的周长. 【解析】 (x﹣4)(x﹣9)=0, x﹣4=0或x﹣9=0, 所以x1=4,x2=9, 因为3+6=9, 所以第三边长为4, 所以三角形的周长为3+6+4=13. 故答案为13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
查看答案如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
![]()
A. 50° B. 60° C. 70° D. 80°
查看答案关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是( )
A. k≤
B. k<
C. k≥
D. k>![]()
抛物线y=﹣
x2﹣x的顶点坐标是( )
A. (1,﹣
) B. (﹣1,
) C. (
,﹣1) D. (1,0)
4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是( )
![]()
A.第一张、第二张
B.第二张、第三张
C.第三张、第四张
D.第四张、第一张
查看答案 试题属性- 题型:填空题
- 难度:中等