题目内容
下列说法正确的是( )
A.﹣4是(﹣4)2的算术平方根
B.±4是(﹣4)2的算术平方根
C.16的平方根是﹣4
D.﹣4是16的一个平方根
计算5x2-2x2的结果是( )
A.3 B.3x C.3x2 D.3x4
如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是( )
A.P是∠A与∠B两角平分线的交点
B.P为∠A的角平分线与AB的垂直平分线的交点
C.P为AC、AB两边上的高的交点
D.P为AC、AB两边的垂直平分线的交点
计算:
(1)
(2)(+)
(3)|1﹣|+|﹣|
有下列五个命题:①对顶角相等;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤一个非负实数的绝对值是它本身.其中真命题的个数为( )
A.1 B.2 C.3 D.4
如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D为BC的中点,动点P从点A出发,以每秒1个单位长度的速度沿线段AB向点B运动,当点P离开点A后,过点P作PE⊥AB交BC于点E,过点E作EF⊥AC于F,设点P运动时间为t(秒),矩形PEFA与△ADE重叠部分的面积为S平方单位长度.
(1)PE的长为 (用含t的代数式表示);
(2)求S与t之间的函数表达式;
(3)求S的最大值及S取得最大值时t的值;
(4)当S为△ABC面积的时,t的值有 个.
某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.
如图1,抛物线y=ax2-11ax+24a(a<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.
(1)求线段OC的长和点B的坐标;
(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;
(3)如图2,折垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求这个最大值;
(4)在(3)的条件下,当取得最大值时,四边形ADNM是否为平行四边形?直接回答 (是或不是).如果不是,请直接写出此时的点M的坐标.
如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是( )