题目内容
分析:连接OA,由圆周角定理可得∠AOB=2∠AED,再由三角形内角和定理及等腰三角形的性质即可求出∠OBA的度数.
解答:
解:连接OA,
∵∠AED=25°,
∴∠AOD=50°,
∵OA=OB,OC⊥AB,
∴∠AOB=2∠AOD=2×50°=100°,
∴∠OAB=∠OBA=
=
=40°.
∵∠AED=25°,
∴∠AOD=50°,
∵OA=OB,OC⊥AB,
∴∠AOB=2∠AOD=2×50°=100°,
∴∠OAB=∠OBA=
| 180°-∠AOB |
| 2 |
| 180°-100° |
| 2 |
点评:本题考查的是圆周角定理及等腰三角形的性质,解答此题的关键是连接OA,构造出等腰三角形及圆心角,沟通已知角与所求角的关系.
练习册系列答案
相关题目