题目内容
11.分析 根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.
解答 解:∵抛物线的开口向上,
∴a>0,
∵-$\frac{b}{2a}$<0,
∴b>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∴abc<0,①正确;
∵对称轴为直线x=-1,
∴-$\frac{b}{2a}$=-1,即2a-b=0,②错误;
∴x=-1时,y<0,
∴a-b+c<0,③错误;
∴x=-2时,y<0,
∴4a-2b+c<0,④正确;
故答案为①④.
点评 本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.
练习册系列答案
相关题目
20.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为( )
| A. | (a-20%)元 | B. | (a+20%)元 | C. | $\frac{5}{4}$a元 | D. | $\frac{4}{5}$a元 |