题目内容

11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,有下列结论:①abc<0; ②2a+b=0; a-b+c>0;④4a-2b+c<0.其中正确的是①④.

分析 根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.

解答 解:∵抛物线的开口向上,
∴a>0,
∵-$\frac{b}{2a}$<0,
∴b>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∴abc<0,①正确;
∵对称轴为直线x=-1,
∴-$\frac{b}{2a}$=-1,即2a-b=0,②错误;
∴x=-1时,y<0,
∴a-b+c<0,③错误;
∴x=-2时,y<0,
∴4a-2b+c<0,④正确;
故答案为①④.

点评 本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网