题目内容
如果是一个完全平方式,则__________.
已知如图,在数轴上点, 所对应的数是, .
对于关于的代数式,我们规定:当有理数在数轴上所对应的点为之间(包括点, )的任意一点时,代数式取得所有值的最大值小于等于,最小值大于等于,则称代数式,是线段的封闭代数式.
例如,对于关于的代数式,当时,代数式取得最大值是;当时,代数式取得最小值是,所以代数式是线段的封闭代数式.
问题:()关于代数式,当有理数在数轴上所对应的点为之间(包括点, )的任意一点时,取得的最大值和最小值分别是__________.
所以代数式__________(填是或不是)线段的封闭代数式.
()以下关的代数式:
①;②;③;④.
是线段的封闭代数式是__________,并证明(只需要证明是线段的封闭代数式的式子,不是的不需证明).
()关于的代数式是线段的封闭代数式,则有理数的最大值是__________,最小值是__________.
如图,⊙是等腰直角三角形的内切圆,,,则⊙的半径等于____________.
某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
在平面直角坐标系中,己知点,,是x轴上的一个动点,当时,点的坐标为__________.
下列说法正确的是( )
A. 三点确定一个圆 B. 一个三角形只有一个外接圆
C. 和半径垂直的直线是圆的切线 D. 三角形的外心到三角形三边的距离相等
如图,已知OD平分∠AOB,P是OD上一点,在OA,OB边上取OA=OB,PM⊥BD,PN⊥AD,垂足分别为M,N.求证:PM=PN.
如图,在四边形中,,,,.
()求的度数.
()求四边形的面积.
如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在平面内,可作为旋转中心的点个数( )
A. 1个 B. 2个 C. 3个 D. 4个